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1. Evaluate each of the following limits.
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(f) lim %, where n is a natural number.
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2. Let f(z) = Ve = for & #0.
(a) Do lim f(x) and lim f(z) exist?
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. o
(b) Does ili% f(x) exist?
3. Let f(z) = sin(lnz) for > 0. Show that 111?([)1+ f(z) does not exist.
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(Hint: Consider a,, = e=(2n=3)7 and b, = e*(2”+%)”.)
4. Let f: R — R be a function defined by
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where a is a real number.
(a) Find lim f(x).
z—0

(b) If f(z) is continuous at z = 0, find the value of a.

5. Let f :[0,1] — R be a continuous function such that 0 < f(z) <1 for all € [0,1]. Show that
there exists ¢ € [0, 1] such that f(c) = ¢. (Hint: Consider the function g(z) = f(z) — z.)

6. Let f:[0,1) — R be a continuous function that satisfies f(zy) = f(z)f(y) for all z,y € [0,1).

(a) Show that f(0) =0or f(z) =1 for all z € [0,1).
(b) Suppose that f(0) = 0.



(i) Let z € [0,1). By using the mathematical induction, show that

@) = f@*) =%

for all natural numbers n

(ii) By taking limit on both sides of (*), show that —1 < f(z) < 1 for all z € [0, 1).



